Citation
A Spatio-temporal Extension to Isomap Nonlinear Dimension Reduction
We present an extension of Isomap nonlinear dimension reduction (Tenenbaum et al., 2000) for data with both spatial and temporal relationships. Our method, ST-Isomap, augments the existing Isomap framework to consider temporal relationships in local neighborhoods that can be propagated globally via a shortest-path mechanism. Two instantiations of ST-Isomap are presented for sequentially continuous and segmented data. Results from applying ST-Isomap to real-world data collected from human motion performance and humanoid robot teleoperation are also presented.